A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations
نویسندگان
چکیده
A parallel time integration method for nonlinear partial differential equations is proposed. It is based on a new implementation of the Paraexp method for linear partial differential equations (PDEs) employing a block Krylov subspace method. For nonlinear PDEs the algorithm is based on our Paraexp implementation within a waveform relaxation. The initial value problem is solved iteratively on a complete time interval. Nonlinear terms are treated as a source term, provided by the solution from the previous iteration. At each iteration, the problem is decoupled into independent subproblems by the principle of superposition. The decoupled subproblems are solved fast by exponential integration, based on a block Krylov method. The new time integration is demonstrated for the one-dimensional advection-diffusion equation and the viscous Burgers equation. Numerical experiments confirm excellent parallel scaling for the linear advection-diffusion problem, and good scaling in case the nonlinear Burgers equation is simulated.
منابع مشابه
Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملTime stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملParallel Edge-Based Inexact Newton Solution of Steady Incompressible 3D Navier-Stokes Equations
The parallel edge-based solution of 3D incompressible Navier-Stokes equations is presented. The governing partial differential equations are discretized using the SUPG/PSPG stabilized finite element method [5] on unstructured grids. The resulting fully coupled nonlinear system of equations is solved by the inexact Newton-Krylov method [1]. Matrix-vector products within GMRES are computed edge-b...
متن کاملParallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems
Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 316 شماره
صفحات -
تاریخ انتشار 2017